A general model for site-specific recombination by the integrase family recombinases.

نویسندگان

  • Y Voziyanov
  • S Pathania
  • M Jayaram
چکیده

We present here a general model for integrase family site-specific recombination using the geometric relationships of the cleavable phosphodiester bonds and the disposition of the recombinase monomers (defined by their binding planes) with respect to them. The 'oscillation model' is based largely on the conformations of the recombinase-bound DNA duplexes and their dynamics within Holliday junctions. The duplex substrate or the Holliday junction intermediate is capable of 'oscillating' between two cleavage-competent asymmetric states with respect to corres-ponding chemically inert 'equilibrium positions'. The model accommodates several features of the Flp system and predicts two modes of DNA cleavage during a normal recombination event. It is equally applicable to other systems that mediate recombination across 6, 7 or 8 bp long strand exchange regions (or spacers). The model is consistent with approximately 0-1, 1-2 and 2-3 bp of branch migration during recombination reactions involving 6, 7 and 8 bp spacers, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-specific recombination by phiC31 integrase and other large serine recombinases.

Most temperate phages encode an integrase for integration and excision of the prophage. Integrases belong either to the lambda Int family of tyrosine recombinases or to a subgroup of the serine recombinases, the large serine recombinases. Integration by purified serine integrases occurs efficiently in vitro in the presence of their cognate (~50 bp) phage and host attachment sites, attP and attB...

متن کامل

A structural view of cre-loxp site-specific recombination.

Structural models of site-specific recombinases from the lambda integrase family of enzymes have in the last four years provided an important new perspective on the three-dimensional nature of the recombination pathway. Members of this family, which include the bacteriophage P1 Cre recombinase, bacteriophage lambda integrase, the yeast Flp recombinase, and the bacterial XerCD recombinases, exch...

متن کامل

Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions.

A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates....

متن کامل

Identification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome

Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...

متن کامل

Chromosomal insertion sites for phages and plasmids.

Bacteriophages insert their DNA into host chromosomes either through transposition (as in phage Mu) or through site-specific recombination (as in phage X). Whereas Mu can insert almost anywhere along the chromosome, X has a single highly preferred chromosomal site. Certain plasmids also insert into chromosomes by site-specific recombination. The site-specific recombinases used generally belong ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 1999